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a b s t r a c t

Numerous reports have shown that performing working-memory tasks causes an elevated rhythmic
coupling in different areas of the brain; it has been suggested that this indicates information exchange.
Since the information exchanged is encoded in brain waves and measurable by electroencephalography
(EEG) it is reasonable to assume that it can be extracted with an appropriate method. In our study
we made an attempt to extract the information using an artificial neural network (ANN), which can
be considered as a stimulus–response model with a state observer. The EEG was recorded from three
subjects while they performed a modified Sternberg task that required them to respond to each task
with the answer ‘‘true’’ or ‘‘false’’. The study revealed that a stimulus–response model can successfully
be identified by observing phase-demodulated theta-band EEG signals 1 s prior to a subject’s answer.
The results also showed that it was possible to predict the answers from the EEG signals with an average
reliability of 75% for all the subjects. From this we concluded that it is possible to observe the system
states and thus predict the correct answer using the EEG signals as inputs.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Applying a simplistic approach, in this paper we consider
the brain as a non-linear dynamical system that can respond
to multiple external stimuli with multiple responses in parallel.
We also view it as a causal system, since in the experiment
reported here, responses occur after the presentation of stimuli.
Since similar stimuli elicit similar responses in our experiment,
we view the brain as a deterministic system for this analysis.
Hence, it is possible to use identification methods for dynamical
systems to obtain simplifiedmathematicalmodels of the brain that
describe the brain’s responses to simple external stimuli. These
mathematical models represent an input-output mapping of the
brain. However, as most brain responses have been trained over a
lifetime, the model would only provide information that is already
known. On the other hand, little is known about how the brain
processes the information about a stimulus to calculate a suitable
response. According to the theory of systems, the output of the
system is a function of the system’s states. Therefore, by observing
the states, the output of the system can be calculated. For linear
systems the relation between the states and the outputs is a linear
combination, whereas for non-linear systems the relation can be
any non-linear function. Similarly, by measuring the states of the
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brain, its responses can be predicted. However, as the brain solves
problems in parallel not all measurable states are related to all
responses. Therefore, only relevant states need to be extracted
from the measurements to predict the response.

In the brain the processing takes place in different neuronal
networks that are active at the same time, but are not necessarily
anatomically directly connected. The integration of the activity
from different regions of the brain presumably leads to a
uniform perception and internal representation of a stimulus. This
functional integration is perhaps mediated by the synchronizing
oscillatory activity of neuronal populations, known as binding (Von
der Malsburg & Schneider, 1986). The binding theory suggests
that there is no specific centre in the brain that would collect
and process all the information. Instead, the involved areas
of the brain bind together for a short period of time when
needed (Damasio, 1989). This mechanism of binding is still not
exactly understood. In our study we investigated the functional
integration in working memory. Working memory is a process
by which the brain sustains the activity of cells whose firing
represents information derived either from a brief sensory input
or a readout from long-term memory (Jensen & Tesche, 2002).
It is the brain’s ability to transiently hold and manipulate goal-
related information, which is reflected in an elevated, persistent
activity of the prefrontal cortex neurons, to guide forthcoming
actions (Durstewitz, Seamans, & Sejnowski, 2000; Fuster, 2000).
According to Fuster, the prefrontal cortex also plays an important
role in behavioural organization (Fuster, 1984). Many authors
(Howard et al., 2003; Jensen, 2001; Jensen & Tesche, 2002) have
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described the increased rhythmic coupling of different areas of
the brain during working-memory tasks, and it has been proposed
that this rhythmic coupling relates to information exchange
(Jensen, 2001) or informational integration. Numerous reports also
suggest that brain activity in the theta frequency band is heavily
involved in the active maintenance and recall of working-memory
representations (Gevins, Smith, McEvoy, & Yu, 1997; Jensen &
Tesche, 2002; Klimesch, Doppelmayr, Schimke, & Ripper, 1997;
Kopp, Schroger, & Lipka, 2004; Sarnthein, Petsche, Rappelsberger,
Shaw, & von Stein, 1998). Kahana, Seelig, and Madsen (2001)
suggests that an important role in this process is carried out
by the phase characteristics of the theta rhythm. The persistent
activity of the prefrontal cortex neurons in the theta rhythm
most likely carries the information about previously encountered
stimuli or future responses required to solve working-memory
tasks (Durstewitz et al., 2000). Therefore, it is reasonable to assume
that the brain states are coded in electromagnetic activity and
thus measurable using electroencephalography (EEG). A similar
situation was observed by other authors, who claim that it is
possible to identify discrete brain states specific to external events
or stimuli (Abeles et al., 1995).

The relation between the stimulus and the response can thus
be described as a stimulus–response model, where the EEG signals
can be considered as the observations of the brain’s states.

EEG signals are measurements of electrical activity in the brain,
obtained by using electrodes on the surface of the scalp. The
magnitude of the measured EEG signal varies with the position
of the electrodes and their distance from the electrical source
(Von Stein & Sarnthein, 2000). The measured activity represents
the sum of the repetitive, periodic, electrical activity and most
likely originates from the sum of the excitatory and/or inhibitory
postsynaptic potentials in large populations of pyramidal cells in
the neocortex (Whittington, Traub, Kopell, Ermentrout, & Buhl,
2000). Local postsynaptic potentials along the pyramidal cell
membranes cause an electrical gradient, and the sum of all the
gradients results in an electrical current, which is reflected in an
electrical potential that can bemeasured on the surface of a human
scalp (Coenen, 1995).

The aim of this research is to investigate whether it is possible
to identify a mathematical model that would link the EEG signals
with the brain responses during working-memory tasks. An ANN
was used to predict the measured responses of the subject from
the EEG signal. Successful training of the ANN would support the
assumption that the working-memory content encoded in the EEG
signals can be successfully extracted using an ANN.

2. Experimental

2.1. Subjects and EEG recording sessions

In this studywe used the data from three healthy, right-handed,
male subjects (informed consent), aged 23, 24 and 27 years.
The EEG recording sessions took place in a dark, quiet and
electromagnetically shielded room. The subjects were placed on
a bed with an elevated headrest to minimize the jugular muscle
tension. The tasks were displayed on an LCD screen, 80 cm in front
of the subject, using Presentation software from Neurobehavioral
Systems.

Simultaneously with the EEG signal, a log file with task details,
subject responses and timestamps was recorded.

2.2. Working-memory task

The EEG signal was measured while the subjects performed
working-memory tasks, which were modified versions of a
Fig. 1. Schematic presentation of the task structure.

Sternberg paradigm (Sternberg, 1966). The main reason for
choosing a Sternberg task over other mental tasks is that the
periods of encoding, retention and recognition are all separated
in time, which allows us to study activity development during
the different stages of short-term memory processing (Jensen &
Tesche, 2002). As the processed information most likely contains
information about the responses the Sternberg paradigm is
suitable for the purpose of our study.

The modified Sternberg paradigm consisted of four tasks and
involved a presentation of verbal–visual and goal stimuli to the
subject before and after a short retention period, respectively.
The activity tasks performed were as follows: memorize–reorder
(M–R), reorder (R), memorize (M) and wait (W). All four
tasks required an observation of different character sets, their
manipulation and response according to the task’s instruction.
Randomly, after every few activity tasks, the subjectswere allowed
10 s of relaxation. The sequence of tasks was randomly chosen
by a computer. The number of repetitions of each task was
approximately the same. Every task consisted of an instruction
about which task had to be performed, a presentation of the
character set, a start signal, a retention period, a probe question,
a response and a pause. The total time of each task was 10 s. All
the characters and their positions in the presentation set were
randomly and chosen by a computer. The general structure of all
the tasks was the same and is presented in Fig. 1.

As shown in Fig. 1. every task startedwith a task instruction that
told the subject which type of information processing needed to be
performed (memorize–reorder, reorder, memorize or wait). After
the task instructions, four alphabetic characters were presented
to the subject on the screen for half a second. Then, as shown in
Table 1, during some tasks the characters were removed, while
during the other tasks they remained until the end of the task.

After that the start signal appeared which indicated the
beginning of the retention period. During the 4 s retention period
the subject had to mentally perform the information processing
required by the task, described in Table 1. Then the probe question
was presented and the subject was given 1 s for a brief thought.
The probe questionwas of the nX form, where X was any character
of the presented character set and n was the position of the
character in the processed set. Afterwards, the subject had to
indicate whether the answer to the probe question was true or
false by pressing the left or right mouse button with his right
hand. At the end of every task the subject was allowed to rest for
approximately 3 s before a new task started.

2.3. EEG data

For recording and data acquisition of the EEG signal a Medelec
system (Profile Multimedia EEG System, version 2.0, Oxford
Instruments Medical Systems Division, Surrey, England) with a
standard 10–20 electrode system and two additional rows of
electrodes (FT7, FC3, FCz, FC4, FT8, TP7, CP3, CPz, CP4, TP8), giving
a total of 29 electrodes, was used. The EEG signals were band-pass
filtered to remove frequencies lower than 0.5 Hz and higher than
70 Hz. The original EEG recordings were sampled with a 256-Hz
sampling frequency, but were later down-sampled to a 25-Hz
sampling frequency due to the large quantities of measured data
that were causing problems with the numerical analysis and the
ANN training. The electrode impedance was kept below 5 k�.
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Table 1
Differences between the tasks according to the required information processing

Task Characters removed? Information processing

Memorize-reorder YES Remember the presented characters and reorder them alphabetically
Reorder NO Reorder the presented characters alphabetically
Memorize YES Remember the presented characters as they appeared
Wait NO Observe the presented characters
2.4. Data analysis

2.4.1. Software tools
For the numerical analysis of the signals we used MATLAB

with its neural network toolbox (The Demuth and Beale (1998)
and Mathworks (1998a)), its signal-processing toolbox (The
(Mathworks, 1998b)) and its statistics toolbox (The Mathworks
(1998c)). When filtering of the EEG signals was necessary, 3rd-
and 5th-order Butterworth filters were used, and the signals
were filtered with MATLAB’s filtfilt function to preserve the
phase characteristics of the signal. The EEG signals were phase
demodulated using MATLAB’s demod function, and the principal
component analysis was preprocessed using MATLAB’s prepca
function, when required.

2.4.2. Training and validation sets
The electrical activity of the cortical neurons probably contains

information about the forthcoming response after the target
presentation and before the answer. In this respect the relevant
sections of the EEG signal are assumed to be between the presented
target and the subject response. Therefore, intervals of 1 s prior
to the response of the EEG signals were selected from the EEG
recording to form the training and validation sets. The selected
intervals of the EEG signals were merged together to form new
signals. The reason for combining the signals of all four tasks was
that the cortex activity prior to the answer was the activity of
the working memory that was designated to answer the question,
regardless of the task. The input and output signals that resulted
were then used for the ANN training and validation. The output of
the ANN was the predicted answer of the test subject. A value of
1 represented the answer ‘true’, and the value 0 represented the
answer ‘false’. During the ANN training the output was set to the
value of the answer (1 or 0) for thewhole selected interval duration
(1s = 25 samples). By using the recorded log file it was possible to
determine which trials had to be answered with ‘true’ and which
with ‘false’. The trials where the subject’s answer was incorrect
were removed and were not used as part of the input/output
signals. The database of the inputs and outputs to the ANN was
then divided into training and validation sets as follows. For the
first subject 178 trials were used for training the ANN and 25 for
the validation. For the second subject 141 trials were used for
the ANN training and 20 for validation. And for the third subject
102 trials were used for the training and 15 for validating the
ANN. The lengths of training and validation sets were obtained
experimentally to achieve the best ANN training with sufficient
data left for the validation.

2.4.3. Signal processing
To find the best prediction possible, when using the ANN, four

different input types were used for the training and validation.
First, the raw EEG signals with all the measured EEG channels
were used as inputs. Secondly, since some authors suggest that
information related to the working memory might be coded in
the theta frequency band (Jensen & Tesche, 2002; Kahana et al.,
2001), for the second input type the EEG signals were band-pass
filtered to obtain theta rhythms, and again all the measured EEG
channels were used as the inputs. As it is possible that working-
memory tasks are also reflected in increased alpha oscillations
(Jensen & Tesche, 2002; Nicolelis, Baccala, Lin, & Chapin, 1995), the
third input set was alpha band-pass filtered EEG signals. Finally,
the phase characteristics of the EEG signals could also play an
important role in information exchange (Jensen & Lisman, 2005;
Kahana et al., 2001); therefore, the theta rhythms were phase
demodulated to form the fourth input data set.

Phase modulation is a method that modulates the transmitted
information or a signal as a variation of the carrier-wave phase. The
phase-modulation of such a carrier wave can be described by the
following equation:

y(t) = K sin(ωc t + ϕ + f (t)),

where y(t) is themodulated signal,K is the amplitude of the carrier
wave, ωc is the carrier frequency, f (t) is the signal containing the
information, and φ is the constant phase shift of the carrier sine
wave.

After the phase demodulation we applied a principal compo-
nent analysis (PCA) and used the 15 most significant components
of the EEG signal for the ANN training and validation. The PCA pro-
cedure is amethod that transforms the existing EEG signals in such
a way that elements of the input vectors (signals) become uncor-
related but maintain the spectral characteristics of the signal by
applying singular-value decomposition. The result of applying the
PCA procedure to the signals is the principal components, where
the first one accounts for as much of the variability in the data as
possible, and each succeeding component accounts for as much of
the remaining variability as possible. The purpose of using the PCA
procedure was to reduce the dimensionality of the input data set
and to reduce the linear dependency of the input signals, which
leads to more efficient training of the ANN. For each type of input,
the training was repeated approximately 150 times to obtain the
results shown in this paper.

2.4.4. Artificial neural networks
For this study various structures of ANNs and different

training functions were tested. The structures used were as
follows: a single-layer perceptron, two- and three-layer feed-
forward networks with different numbers and different activation
functions (hard limit, log-sigmoid, hyperbolic tangens sigmoid and
linear) of neurons on each layer. The training procedures used
were as follows: a perceptron weight and bias learning function,
Levenberg-Marquardt backpropagation and a scaled conjugate
gradient backpropagation algorithm. The study revealed that some
of the network structures (the single-layer perceptron and the
two-layer feed-forward network) cannot be used for response
prediction, since it was already impossible to train the ANN.
Satisfactory results were obtained by using a three-layer feed-
forward network with 10 neurons in the first layer, 2 neurons in
the second layer, and one neuron in the output layer (Fig. 2). The
neurons in the first and second layers had a tangens sigmoidal
activation function and the output neuron had a linear activation
function. The neural network was trained using a scaled conjugate
gradient backpropagation (trainscg) algorithm.
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Fig. 2. Block diagram of the ANN used in this study.

3. Results

An attempt was made to train the ANN to predict the responses
of the subjects from the EEG signals. Successful training would
show that information about the answers encoded in the EEG
signals could be extracted using the ANN.

For the first three input-data types – raw EEG signals, theta
filtered EEG signals and alpha filtered EEG signals – only the results
for the first test subject are shown, since the results for the other
test subjects show very similar characteristics. For the fourth input
data type – theta filtered and phase-demodulated EEG signals – the
results for all three test subjects are shown. Since all the other ANN
structures mentioned before failed to produce satisfactory results,
they are not shown in this paper.

In the figures shown below the thick line represents the
measured answers in a time of 1 s. The thin line is the predicted
answer of the ANN for the 1-second period. An approximate
estimation of the prediction efficiencywasmade using an averaged
ANNoutput for each separate trial. If the average value obtained for
the 1-second period was higher than 0.5 the predicted answer was
assumed to be 1, or true, and if the value was lower than 0.5 the
predicted answer was assumed to be 0, or false.

3.1. Raw EEG signals

The first attempt was made to train the ANN with raw EEG
signals as the input signal, and the corresponding answers as the
output signal. The results obtained show that the ANN could not be
trained to predict the answers. In Fig. 3 the sequence of predicted
and measured answers is shown for the training and validation.

3.2. Theta frequency band

Next, the ANN was trained using the theta band-pass filtered
EEG signals. The training procedure and the ANN structure
remained the same as for the previous example. The results of the
training and validation are shown in Fig. 4.

Fig. 4 shows that the result of the ANN training and the predic-
tion for the theta rhythm is no better than for the raw EEG signals.

3.3. Alpha frequency band

When the ANN was trained using the alpha band-pass filtered
EEG signals, the training procedure and the ANN structure
Fig. 3. Predicted answers in comparison to the measured answers when the ANN was trained on raw EEG signals for the training (left) and validation (right) set of the first
subject.
Fig. 4. Predicted answers in comparison to the measured answers when the ANN was trained on theta band-pass filtered EEG signals for the training (left) and validation
(right) sets of the first subject.
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Fig. 5. Predicted answers in comparison to the measured answers when the ANN was trained on alpha band-pass filtered EEG signals for the training (left) and validation
(right) sets of the first subject.
Fig. 6. Predicted answers in comparison to the measured answers when the ANN was trained on the phase-demodulated theta frequency band EEG signals for the training
(left) and validation (right) sets of the first subject (Each dotted, vertical line represents the end of a previous and the beginning of a new trial).
Fig. 7. Predicted answers in comparison to the measured answers when the ANN was trained on the phase-demodulated theta frequency band EEG signals for the training
(left) and validation (right) sets of the second subject (Each dotted, vertical line represents the end of a previous and the beginning of a new trial).
remained the same as in the previous cases. The results of the
training and validation are shown in Fig. 5.

Like the theta band-pass filtered input signals, the alpha band-
pass filtered EEG signals do not carry enough information to train
the ANN and successfully predict the answers.

The ANNs reliability when using the above methods of
preprocessing, i.e. raw, theta and alpha filtered EEG signals were
36%, 44% and 32%, respectively.
3.4. Phase-demodulated EEG signals

For the fourth type of preprocessing, the ANNwas trained using
phase-demodulated theta rhythm input signals. The results for the
training and validation sets are shown in Figs. 6–8.

Figs. 6–8 show that it was possible to train the ANN to predict
the answers of the subjects from phase-demodulated EEG signals
with an approximately 72% reliability for first subject (18 correctly
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Fig. 8. Predicted answers in comparison to the measured answers when the ANN was trained on the phase-demodulated theta frequency band EEG signals for the training
(left) and validation (right) sets of the third subject (Each dotted, vertical line represents the end of a previous and the beginning of a new trial).
Table 2
Reliability of ANN’s response prediction when using different training and
validation sets from subject 1

Training set 2 3 4 5 6 Mean

Reliability 72% 72% 76% 76% 72% 73.6%

predicted answers from a total of 25), a 75% reliability for second
subject (15 correctly predicted answers from a total of 20) and
an 80% reliability for third subject (12 correctly predicted answers
from a total of 15).

Also, several trials were made to train the ANN with different
training sets for subject 1, to see if the reliability of the response
prediction changes when the input/output data changes. The
training and validation sets were obtained by randomly choosing
the trials from the original signal in the same proportion as
described in the subsection Training and validation sets. The
percentages of reliabilities are very similar to the one shown in
Fig. 6, and they are collected in Table 2.

Table 2 shows that the prediction reliabilities are very similar
when using different training and validation sets. From this we can
conclude that different training sets carry approximately the same
information relevant for the prediction and do not affect the ANN’s
response reliability. This also eliminates the possibility of the
ANN’s response prediction being a result of a random event if using
only one data set. If we assume that the reliability of a random
event would be 50%, then the approximately 75% reliability of the
ANN is high enough to suggest that the response prediction cannot
be considered as a random event.

4. Discussion

In this study we examined four different types of signal
preprocessing and various structures of ANNs to find a model for
the best possible response prediction when using the EEG signals
of three subjects performing a modified Sternberg task.

The ANN structure was obtained experimentally by comparing
the responses to various types of network design, numbers of
neurons and their activation functionswith the responses recorded
during the EEG sessions. The three-layer feed-forward network
proved to be the most appropriate choice for this study.

The types of preprocessing used were chosen according to
the studies and suggestions in the field of working-memory EEG
analysis made so far. Since some authors suggested that working-
memory tasks are associated with increased synchronization of
the theta-band oscillations in the prefrontal cortex, which are
most likely the result of memory maintenance and information
Fig. 9. Schematic representation of themodel for the response prediction from the
EEG signals.

exchange between groups of neurons (Jensen & Tesche, 2002),
and that the firing rate and time shift of specific neuron pulses
suggest that information transmitted between neurons is phase-
modulated (Jensen & Lisman, 2005; Kahana et al., 2001), phase-
demodulated theta-band EEG signals were also used as the inputs
to the ANN.

The phase-demodulated signals proved to be the most suitable
input selection. The results that were obtained using phase-
demodulated signals as inputs showed that it is possible to predict
the answers from the EEG signals with an average reliability of 75%
for all three subjects, which is significantly higher, although not
perfect, than a randomgeneration of answers or theANNs response
reliability when using raw, theta or alpha filtered EEG signals,
which was approximately 37%. The ANN had 185 parameters,
and approximately 2500–4500 data points were available in the
training set for each test subject. Therefore, the ANN training
can be considered as reliable, which was further confirmed by
the prediction of the answers on the validation set. Furthermore,
the results are comparable for all three test subjects. Several
repetitions of the training procedurewere needed before a feasible
solution could be found, which is an indication of the complexity
of the problem.

The most problematic issue in signal preparation was the
phase demodulation of the signals. The phase demodulation
was calculated using the Hilbert transformation. However, the
problem was that a carrier frequency has to be known in order
to demodulate the signal. In our case, the carrier frequency
was chosen such that the transformed signal exhibited no drift.
Considering the functional anatomy of the brain and the origin of
the EEG signals, it is remarkable that the simplistic assumption
of modulated EM sine waves achieves a reasonably good relation
between the EEG data and the subject’s performance.

The model that predicts the brain’s response from the EEG
signals can be represented schematically, as shown in Fig. 9.

The ANN and the PCA are static models that are used to
compute the response from the states of the system. A band-pass
Butterworth filter and phase demodulation, however, are used to
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calculate the states’ estimates from the EEG signals. Thus, phase
demodulation can be considered as a dynamic transformation of
the signals that computes the state estimates from the filtered EEG
signals.

For deterministic systems the evolution of states can be
described by a trajectory in the state space that is the same
whenever the system starts with the same initial conditions and
is excited with the same stimulus. Therefore, the resulting steady
state of the system is in such cases the same. Some authors showed
that by analyzing theneuronal activity of a behavingmonkey, using
a hidden Markov model, it was possible to detect distinct states of
neuronal activity within which the firing rates are approximately
stationary (Abeles et al., 1995; Seidemann, Meilijson, Abeles,
Bergman, & Vaadia, 1996). Another study showed that by using a
hidden Markov model it was possible to identify the behavioural
mode of the monkey and directly identify the corresponding
collective network activity (Gat, Tishby, & Abeles, 1997). Abeles
et al. (1995) claim that different behaviouralmodes and stimuli are
consistently reflected by different states of neural activity. Similar
characteristics, regarding brain states, were also observed during
this study. The calculated states’ estimates in the one-second
interval prior to the response can be used to calculate the subjects’
response. This suggests that the response signal is generated in
the brain at least one second prior to the response. Furthermore,
the response signal approaches the steady state with a curve in
the state space that is typical for the resulting response. However,
due to the extreme complexity of the brain, such characteristics
are expected to be true only when performing specially designed
tasks.

5. Conclusions

Considering all the simplifications that were made in the pro-
posed model, taking into account that the brain is a permanently
adaptive system, and that some correct answers might have been
guessed, the prediction success of the ANN is very high. As indi-
cated by the ANN, all the combinations of 15 principal compo-
nents that can be observed at least one second prior to the answer
are typical for the corresponding answer. The fact that a model
can be identified to describe the relation between the EEG sig-
nals and the brain responses shows that EEG signals are indica-
tive of the brain state estimates that are relevant to the stimulus
response.

Since the brain is a very complex system it is very difficult to say
whether the trained ANN represents a model of working memory
for the logical or the physical answer. The Sternberg task elicits
the preparation of motor activity with delayed execution so the
relation to the motoric activity of the hand is obvious. However,
if we consider the fact that the relation exists for the whole second
before the answer, this suggests that the working memory is very
likely involved in the process.

It can be concluded that using complex data like that from
the EEG and a complex task like the Sternberg task, it is
remarkable that a simple ANN, simplistic theta band filtering and
phase demodulation can give a reasonably good prediction of
the subject’s performance. Phase demodulation may thus be a
useful approach for analysing the EEG related to working-memory
tasks. It is possible, however, that phase demodulation also
describes some aspects of working-memory activity in the brain
itself.
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